Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-10, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38312076

ABSTRACT

A series of activated carbon was obtained from rape straw by chemical modification with phosphoric acid (H3PO4). The activated carbon was characterized and the adsorption capacity for Rhodamine B (RhB) from water was analysed. The SEM images showed that PRC-40 is a porous material and the BET analysis revealed a high surface area of 1720 m2/g with the coexistence of micropores and mesopores. The FTIR spectra determined the presence of oxygenated functional groups at its surface. The XPS spectra revealed that the content of carboxyl and metaphosphate groups in the modified activated carbon significantly increased, and this is conducive to the adsorption reaction. The XRD pattern showed the amorphous nature of carbon. The effect of significant parameters, such as the concentration of H3PO4 for modification and pH value, has been discussed. The kinetic data showed that the pseudo-second-order model is predominant. Besides, the Langmuir model was compatible well with the equilibrium data, and the maximum adsorption capacity of the activated carbon modified by H3PO4 was 2882.84 mg/g. Therefore, agricultural waste and rape straw can be used to prepare effective adsorbents for the application with the removal of dye from wastewater.

2.
Polymers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447562

ABSTRACT

A Fe-N conjugated organic polymer (SMP-Fr-Py) was prepared from ferrocene and pyrrole using a Scholl coupling reaction, which significantly improved the performance of Cr(VI) removal compared to the polymer (HCP-Fr-Py) prepared by adding the cross-linker formaldehyde dimethyl acetal (FDA). The results showed that at a pH of 2 and at 25 °C, the removal of Cr(VI) reached 90% for SMP-Fr-Py and only 58% for HCP-Fr-Py after 20 min of reaction. Subsequently, 99% and 78% were achieved after 120 min of reaction, respectively. The test results showed that the removal reaction followed a pseudo-second-order kinetic model. The removal efficiency decreased with increasing solution pH and initial Cr(VI) concentration, but increased with increasing SMP-Fr-Py dosage, reaching three cycles. The characterization of the reaction complexes and measurements of Cr species conversion revealed the near absence of Cr(VI) species in the solution. Approximately 38% of Cr(VI) was found to be adsorbed on the material surface, with another fraction present in solution (24%) and on the material surface (38%) in the form of Cr(III). The overall study showed that the direct connection of ferrocene and pyrrole in SMP-Fr-Py through C-C bonding increased the conjugated structure of the polymer backbone, which facilitated electron transfer and transport. Furthermore, the Fe-N elements worked synergistically with each other more easily, which improved the removal performance of Cr(VI) and provided a reference for the subsequent work.

SELECTION OF CITATIONS
SEARCH DETAIL
...